推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

求解云计算任务调度的粒子群优化算法研究

更新时间:2019-11-02 21:38:12 大小:875K 上传用户:杨义查看TA发布的资源 标签:粒子群优化算法 下载积分:0分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

文档为求解云计算任务调度的粒子群优化算法研究总结文档,是一份不错的参考资料,感兴趣的可以下载看看,,,,,,,,,,,,,

部分文件列表

文件名 大小
求解云计算任务调度的粒子群优化算法研究.pdf 875K

部分页面预览

(完整内容请下载后查看)
Computer Science and Application 
Research on Particle Swarm Optimization  
Algorithm for Solving Cloud Computing  
Task Scheduling  
Qing Wang, Xueliang Fu, Gaifang Dong, Shasha Zhao  
College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot  
Inner Mongolia  
Received: Mar. 6th, 2018; accepted: Mar. 20th, 2018; published: Mar. 28th, 2018  
Abstract  
At present, task scheduling problem in cloud environment is a hot research topic, and particle  
swarm optimization algorithm (PSO) is an important intelligent algorithm to solve the task sche-  
duling problem. According to the correlation, particle swarm Optimization algorithm (CPSO) and  
new adaptive inertia weight based particle swarm optimization algorithm (NewPSO) in solving  
this problem are easy to fall into the local optimal solution and poor searching ability, In this pa-  
per, the task execution time and cost as the goal, the random factor and the inertial weight are  
fused, and the Enhanced Particle Swarm Optimization (EPSO) is proposed. Simulation results show  
that under the same conditions, compared with PSO algorithm, CPSO algorithm and NewPSO algo-  
rithm, EPSO algorithm can reduce execution time and cost more effectively (including task execu-  
tion time, time cost and virtual machine cost), and get a better scheduling solution.  
Keywords  
Task Scheduling, PSO Algorithm, Correlation, Execution Time, Cost Consumption  
求解云计算任务调度的粒子群优化算法  
研究  
晴,付学良,董改芳,赵莎莎  
内蒙古农业大学计算机与信息工程学院,内蒙古 呼和浩特  
收稿日期:201836日;录用日期:2018320日;发布日期:2018328日  
文章引用: 王晴, 求解云计算任务调度的粒子群优化算法研究[J]. 计算机科学与应用, 2018,  
8(3): 286-295. DOI

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载