- 1
- 2
- 3
- 4
- 5
基于正则化与时空约束改进K最近邻算法的农业物联网数据重构
资料介绍
针对农业复杂环境易发的物联网感知数据丢失异常问题,该文提出一种基于正则化惩罚的K最近邻数据重构方法(K nearest neighbor-regularization penalty,KNN-RP),采用岭回归方法对最近邻方法中的最小二乘因子进行正则化,并讨论了惩罚项的范数选取形式.通过对农业物联网感知数据的时空稳定性与相关性分析,确定了时间与空间约束矩阵的定义方式.采用温室数据样本对算法性能进行交叉验证,结果显示该文的KNN-RP性能在点丢失模型下优于KNN、反距离加权KNN算法以及DT算法,而在块丢失模型下优于KNN和反距离加权KNN算法,略低于DT算法,提高了农业物联网的感知数据质量.该研究可为基于物联网数据的农业生产决策提供参考.
部分文件列表
文件名 | 大小 |
基于正则化与时空约束改进K最近邻算法的农业物联网数据重构.pdf | 2M |
部分页面预览
(完整内容请下载后查看)最新上传
-
21ic小能手 打赏10.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
cai0603 打赏3.00元 3天前
用户:CJQ_ENJOY
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
cai0603 打赏3.00元 3天前
用户:dongshao
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
21ic下载 打赏310.00元 3天前
用户:gsy幸运
-
21ic下载 打赏310.00元 3天前
用户:zhengdai
-
21ic下载 打赏310.00元 3天前
用户:小猫做电路
-
21ic下载 打赏310.00元 3天前
用户:liqiang9090
-
21ic下载 打赏270.00元 3天前
用户:kk1957135547
-
21ic下载 打赏160.00元 3天前
用户:w178191520
-
21ic下载 打赏160.00元 3天前
用户:w1966891335
-
21ic下载 打赏50.00元 3天前
用户:w993263495
-
21ic下载 打赏40.00元 3天前
用户:w993263495
-
21ic下载 打赏90.00元 3天前
用户:cooldog123pp
-
21ic下载 打赏30.00元 3天前
用户:sun2152
-
21ic下载 打赏40.00元 3天前
用户:xzxbybd
-
21ic下载 打赏40.00元 3天前
用户:铁蛋锅
-
21ic下载 打赏30.00元 3天前
用户:happypcb
-
21ic下载 打赏50.00元 3天前
用户:forgot
-
21ic下载 打赏10.00元 3天前
用户:xuzhen1
-
21ic下载 打赏20.00元 3天前
用户:wanglu6666
-
21ic下载 打赏5.00元 3天前
用户:人间留客
-
21ic下载 打赏5.00元 3天前
用户:jyxjiyixing
-
21ic下载 打赏5.00元 3天前
用户:akae_du
-
21ic下载 打赏5.00元 3天前
用户:ouyang_56
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
xlhtracy 打赏10.00元 3天前
-
xlhtracy 打赏10.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
xlhtracy 打赏5.00元 3天前
-
czmhcy 打赏1.00元 3天前
资料:bitboy
全部评论(0)