推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

基于神经网络的模数转换电路动态误差源识别系统设计

更新时间:2020-10-26 00:34:20 大小:2M 上传用户:gsy幸运查看TA发布的资源 标签:神经网络模数转换 下载积分:2分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

为提升信号识别电路的电量采集精度,实现理想状态下的电力误差校准,设计基于神经网络的模数转换电路动态误差源识别系统。以CNN神经网络作为模数转换电路的物理依赖环境,通过合理选取动态识别元件的方式,实现误差源识别系统的硬件运行环境搭建。在此基础上,将模拟电流转化成数字信号,再将其完整存储于系统数据库中,利用既定数学运算公式对已存储的数字信号进行识别精度提纯处理,实现误差源识别系统的软件运行环境搭建,联合相关硬件执行设备,完成基于神经网络的模数转换电路动态误差源识别系统设计。实际应用结果表明,在加压环境下,新型误差源识别系统的电量采集精度达到90%,单位时间内的信号识别量超过7.5×10^9TB,理想状态下信号识别电路的电力误差校准能力得到有效保障。

In order to improve the acquisition accuracy of signal recognition circuit and realize the power error calibration in ideal state,a neural network based dynamic error source identification system of analog-to-digital conversion circuit is hardware operation link of the error source identification system is constructed by reasonably selecting the dynamic identification elements and taking CNN neural network as the physical dependent environment of the analog-to-digital converter this basis,the analog current is converted into digital signals,and then they are stored completely in the system purifying processing for the stored digital signal is conducted to make identification precision improved by means of the established mathematical software running link construction of the error source recognition system is neural network based dynamic error source recognition system for the analog-to-digital conversion circuit is completed by combining the relevant hardware practical application results show that,in the pressurized environment,the power acquisition accuracy of the new error source identification system reaches 90%,the signal recognition quantity per unit time exceeds 7.5×10^9 TB,and the power error calibration ability of the signal recognition circuit under ideal conditions is effectively guaranteed.

部分文件列表

文件名 大小
基于神经网络的模数转换电路动态误差源识别系统设计.pdf 2M

【关注B站账户领20积分】

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载