推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

神经网络在数学建模中的应用

更新时间:2020-01-04 01:05:47 大小:4M 上传用户:xuzhen1查看TA发布的资源 标签:神经网络数学建模 下载积分:2分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

神经网络(Neural Nerwork-NN)是当今最具魅力的一个新兴学科生长点,已发展成为现代科学技术的新热点,其迅猛发展将对整个信息科学产生巨大的影响。神经网络在数学建模中的应用也非常的广泛。

本文首先概述了人工神经网络的基础理论,接着阐述了神经网络的模型、结构、分类、特性。然后针对应用的目的,介绍了数学建模中常用两种的神经网络。常用的神经网络主要有两种:一种是基于误差反传算法的前馈神经网络,即BP神经网络,主要用来实现非线性映射;另一种是自组织神经网络,即SOM网,主要用来聚类和模式识别。

神经网络在数学建模中比较擅长的是联想记忆,作分类器,作预测,作参数选择,作控制器等等,这些问题都可以通过神经网络进行解决。

应用实例为2005年数学建模竞赛原题,使用“BP神经网络逼近法”预测算法模型,计算了观测站各时间段的预测值。“BP神经网络近法”为通用算法,优点是计算灵活,尤其对稳态随机过程的适近效果较好,对精度要求比较高的问题,可以很好的解决,而且可以作整体预测,因此是目前最流行的算法。它解决了两个实际问题,其一为函数逼近问题,其二为预测问题,重点论述了如何结合实际应用问题来进行数据预处理、网络建立、网络训练及结果分析,展示BP神经网络在应用上的能力。

最后,本文简要展望神经网络网络的发展前景,我们有理由相信,只要我们坚持不懈地努力,来自神经网络理论研究的一些新理论和新方法必将给2]世纪科学研究带来源


部分文件列表

文件名 大小
神经网络在数学建模中的应用.pdf 4M

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载