- 1
- 2
- 3
- 4
- 5
一种基于卷积神经网络的恒星光谱快速分类法
资料介绍
恒星光谱数据的分类是天体光谱自动识别的最基本任务之一,光谱分类的研究能够为恒星的演化提供线索。随着科技的发展,天文数据也向大数据时代迈进,需要处理的恒星光谱数量越来越多,如何对其进行自动而精准地分类成为了天文学家要解决的难题之一。当前恒星光谱自动分类问题的解决方法相对较少,为此本文使用了一种基于卷积神经网络的方法对恒星光谱MK系统进行分类。该网络由数据输入层、四个卷积层、四个池化层、全连接层、输出层构成,与传统网络相比具有局部感知、参数共享等优点实验。在Python3.5的环境下编程,利用Tensorflow构建了一个简单高效的具有四个卷积层的卷积神经网络,并将Dropout作用于全连接层之后以防止过度拟合。Dropout的基本思想:当网络模型进行训练时,把一些神经网络节点按一定的比例丢弃,使其暂时不发挥作用。Dropout可以理解成是一种十分高效的神经网络模型平均方法,由于它不依赖于某些局部特征所以能够让网络模型更加鲁棒。实验中使用的一维恒星光谱图是取自LAMOST DR3数据库,首先进行预处理截取光谱3 600~7 300?的部分,均匀采样后使用min-max标准化法对其进行初始化。实验包括两部分:第一部分为依据恒星光谱MK系统对光谱进行分类,每一类的训练样本包含1 000条光谱数据,测试样本为400条光谱数据,首先通过训练样本对CNN网络进行训练,进行3 000次的迭代,用训练后的网络将测试样本进行分类以验证网络的准确性;第二部分为相邻两类的恒星光谱的分类,其中O型星数据集样本为250条光谱,其余类别恒星样本数据集均为4 000条光谱,将数据5等分,每次选取当中的一份当作测试集,其余部分当作训练集,采用5折交叉验证法求得模型准确率,用BP神经网络进行对比实验。选择对网络模型进行评估的指标包括精确率P、召回率R、 F-score、准确率A。实验结果显示CNN在对六类恒星光谱进行分类时其准确率都在95%以上,在对相邻类别的恒星进行分类时,由于O型星样本量较少,所以得到的分类结果不太理想,对其余类别的恒星分类准确率都高于98%,以上结果都证明了CNN算法能够很好地解决恒星光谱的分类问题。
部分文件列表
文件名 | 大小 |
一种基于卷积神经网络的恒星光谱快速分类法.pdf | 2M |
部分页面预览
(完整内容请下载后查看)相关下载
最新上传
-
21ic小能手 打赏10.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
cai0603 打赏3.00元 3天前
用户:CJQ_ENJOY
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
cai0603 打赏3.00元 3天前
用户:dongshao
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
21ic下载 打赏310.00元 3天前
用户:gsy幸运
-
21ic下载 打赏310.00元 3天前
用户:zhengdai
-
21ic下载 打赏310.00元 3天前
用户:小猫做电路
-
21ic下载 打赏310.00元 3天前
用户:liqiang9090
-
21ic下载 打赏270.00元 3天前
用户:kk1957135547
-
21ic下载 打赏160.00元 3天前
用户:w178191520
-
21ic下载 打赏160.00元 3天前
用户:w1966891335
-
21ic下载 打赏50.00元 3天前
用户:w993263495
-
21ic下载 打赏40.00元 3天前
用户:w993263495
-
21ic下载 打赏90.00元 3天前
用户:cooldog123pp
-
21ic下载 打赏30.00元 3天前
用户:sun2152
-
21ic下载 打赏40.00元 3天前
用户:xzxbybd
-
21ic下载 打赏40.00元 3天前
用户:铁蛋锅
-
21ic下载 打赏30.00元 3天前
用户:happypcb
-
21ic下载 打赏50.00元 3天前
用户:forgot
-
21ic下载 打赏10.00元 3天前
用户:xuzhen1
-
21ic下载 打赏20.00元 3天前
用户:wanglu6666
-
21ic下载 打赏5.00元 3天前
用户:人间留客
-
21ic下载 打赏5.00元 3天前
用户:jyxjiyixing
-
21ic下载 打赏5.00元 3天前
用户:akae_du
-
21ic下载 打赏5.00元 3天前
用户:ouyang_56
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
xlhtracy 打赏10.00元 3天前
-
xlhtracy 打赏10.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
xlhtracy 打赏5.00元 3天前
-
czmhcy 打赏1.00元 3天前
资料:bitboy
全部评论(0)