推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

基于支持向量机的跌倒检测算法研究

更新时间:2019-12-30 12:35:59 大小:5M 上传用户:zhiyao6查看TA发布的资源 标签:支持向量机跌倒检测算法 下载积分:1分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

实时跌倒检测能有效降低老人因跌倒导致的身心伤害,提高老人的独居能力和健康水平。为提高基于惯性传感器的跌倒检测系统的准确率,降低系统误报率和漏报率,提出了应用基于径向基函数的支持向量机算法实现跌倒判定。首先,应用佩戴在人体腰间的便携式跌倒检测系统完成数据的采集;然后,利用基于径向基函数(RBF)的SVM分类器标记疑似跌倒行为,并利用粒子群算法完成分类算法中惩罚因子C和RBF参数g的优化。结果表明,在区分跌倒与类似跌倒的日常活动时,基于SVM算法的跌倒检测系统准确率、误报率和漏报率分别为97.67%,4.0%和0.67%。与传统的阈值方法相比,跌倒检测性能有很大提高,从而加强了该系统在老人跌倒检测中的应用。


部分文件列表

文件名 大小
基于支持向量机的跌倒检测算法研究.pdf 5M

部分页面预览

(完整内容请下载后查看)

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载