推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

基于活跃目标点粒子群算法的SVM参数选取

更新时间:2019-10-29 07:04:53 大小:367K 上传用户:杨义查看TA发布的资源 标签:目标点粒子群算法 下载积分:0分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

文档为基于活跃目标点粒子群算法的SVM参数选取总结文档,是一份不错的参考资料,感兴趣的可以下载看看,,,,,,,,,,,,,

部分文件列表

文件名 大小
基于活跃目标点粒子群算法的SVM参数选取.pdf 367K

部分页面预览

(完整内容请下载后查看)
Artificial Intelligence and Robotic3, 19-24  
Parameters Selection of SVM Based on  
Extended APSO Algorithm  
Jingnan Li, Kaichun Ren, Jialing Yu, Fuguang Chen, Zhaoming Wu  
Chonnstitute, Chongqing  
Email
Received: Mar. 14th, 2014; revised: Apr. 10th, 2014; accepted: Apr. 22nd, 2014  
Copyright © 2014 by authors and Hans Publishers Inc.  
ons Attribution International License (CC BY).  
Abstract  
Support Vector Machine (SVM), a new mathematic modeling tool, has been widely used in many  
industry applications. The good generalization ability and estimation accuracy are impacted by  
parameters selection of SVM. Particle Swarm Optimization is improved by using active target. The  
active target particle swarm optimization was proposed to search the optimal combination of SVM  
parameters. Simulations show that active target particle swarm optimization is an effective way to  
search the SVM parameters and has good performance in classification.  
Keywords  
Support Vector Machines, Active Target Particle Swarm Optimization, Parameter Selection  
基于活跃目标点粒子群算法的SVM参数选取  
李景南,任开春,余佳玲,陈福光,吴钊铭  
重庆
Email
收稿日期:2014314日;修回日期:2014410日;录用日期:2014422日  
摘 要  
支持向量机是最近才兴起的一种分类工具,它广泛用于控制领域,但是其预测精度受到了其参数选取的  
19  

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载