推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

基于多种模型的递进式智能SOC估算

更新时间:2020-11-01 00:28:53 大小:2M 上传用户:gsy幸运查看TA发布的资源 标签:soc 下载积分:1分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

为了精确估算电动汽车锂离子电池的荷电状态(SOC),采用多种等效电路模型,建立空间状态方程,通过带遗忘因子递推最小二乘法实时在线辨识电池模型参数,动态实时更新电池模型状态方程,利用Matlab对实验工况进行仿真,采用基于电池电路模型的联合FFRLS-EKF算法,在运算过程中加入电池健康状态(state of health,简称SOH)因子,得到的SOC估算值平均误差低于1.8%,最大误差低于3%。通过实验验证了FFRLS-EKF-SOC精确性,解决了误差累积问题。

In order to accurately estimate state of charge(SOC) of the electric car lithium-ion battery, the paper used a variety of equivalent circuit model and built space state equation, through real-time online with forgetting factor recursive least squares identification battery model parameters, dynamic real-time update battery model state equation, the experimental condition to make use of the Matlab simulation, based on the battery circuit model of joint FFRLS-EKF algorithm, and joined the battery state of health(SOH),The average error of the obtained SOC estimate is less than 1.8% and the maximum error is less than 3%.Finally, the accuracy of FFRLS-EKF-SOC is verified, and the error accumulation problem is solved.

部分文件列表

文件名 大小
基于多种模型的递进式智能SOC估算.pdf 2M

【关注B站账户领20积分】

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载