- 1
- 2
- 3
- 4
- 5
基于纹理特征和SVM的QuickBird影像苹果园提取
资料介绍
为提高高空间分辨率遥感影像(高分影像)中苹果园提取精度,基于Quick Bird遥感数据,研究综合光谱特征和纹理特征的苹果园自动提取方法。该方法首先采用最佳指数因子(OIF)获取多光谱波段最佳组合,然后采用不同大小滑动窗口(从3像素×3像素到13像素×13像素)提取全色波段的灰度共生矩阵(GLCM)、分形和空间自相关3种纹理特征并分别与光谱特征组合,最后通过支持向量机(SVM)分类进行苹果园分类识别。研究表明:在分类特征上,与单一光谱或纹理特征相比,光谱特征结合纹理特征能有效提高苹果园提取精度(Fa)和总体分类精度(OA),其中光谱+GLCM纹理(9像素×9像素)分类精度最高,Fa和OA分别为96.99%和96.16%,比光谱+分形纹理分别提高0.63个百分点和1.56个百分点,比光谱+空间自相关纹理显著提高11.92个百分点和9.20个百分点。在分类方法上,通过对比分析SVM、最大似然和神经网络3种方法的分类结果,探明SVM分类识别苹果园精度最高。最后对苹果园提取结果进行面积统计,结果表明GLCM纹理结合SVM分类的苹果园面积估算与目视解译结果的一致性超过98%。
部分文件列表
文件名 | 大小 |
基于纹理特征和SVM的QuickBird影像苹果园提取.pdf | 2M |
部分页面预览
(完整内容请下载后查看)最新上传
-
21ic小能手 打赏15.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
21ic下载 打赏310.00元 3天前
用户:kk1957135547
-
21ic下载 打赏310.00元 3天前
用户:zhengdai
-
21ic下载 打赏310.00元 3天前
用户:小猫做电路
-
21ic下载 打赏310.00元 3天前
用户:gsy幸运
-
21ic下载 打赏310.00元 3天前
用户:liqiang9090
-
21ic下载 打赏160.00元 3天前
用户:w178191520
-
21ic下载 打赏210.00元 3天前
用户:jh035511
-
21ic下载 打赏150.00元 3天前
用户:jh03551
-
21ic下载 打赏40.00元 3天前
用户:cooldog123pp
-
21ic下载 打赏40.00元 3天前
用户:sun2152
-
21ic下载 打赏30.00元 3天前
用户:WK520077778
-
21ic下载 打赏60.00元 3天前
用户:1111111ffgg
-
21ic下载 打赏20.00元 3天前
用户:铁蛋锅
-
21ic下载 打赏20.00元 3天前
用户:小猪配二锅头
-
21ic下载 打赏20.00元 3天前
用户:w1966891335
-
21ic下载 打赏20.00元 3天前
用户:w993263495
-
21ic下载 打赏20.00元 3天前
用户:xzxbybd
-
21ic下载 打赏30.00元 3天前
用户:happypcb
-
21ic下载 打赏30.00元 3天前
用户:zzggq
-
21ic下载 打赏20.00元 3天前
用户:xuzhen1
-
21ic小能手 打赏10.00元 3天前
-
21ic小能手 打赏20.00元 3天前
-
21ic小能手 打赏15.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
21ic下载 打赏310.00元 3天前
用户:小猫做电路
-
21ic下载 打赏310.00元 3天前
用户:gsy幸运
-
21ic下载 打赏310.00元 3天前
用户:liqiang9090
-
21ic下载 打赏310.00元 3天前
用户:zhengdai
-
21ic下载 打赏160.00元 3天前
用户:w1966891335
-
21ic下载 打赏160.00元 3天前
用户:w178191520
-
21ic下载 打赏160.00元 3天前
用户:kk1957135547
-
21ic下载 打赏40.00元 3天前
用户:WK520077778
-
21ic下载 打赏40.00元 3天前
用户:sun2152
-
21ic下载 打赏30.00元 3天前
用户:xuzhen1
-
21ic下载 打赏50.00元 3天前
用户:铁蛋锅
全部评论(0)