推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

基于小波包神经网络的整流电路晶闸管故障识别

更新时间:2020-09-17 05:48:33 大小:870K 上传用户:守着阳光1985查看TA发布的资源 标签:整流电路晶闸管 下载积分:1分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

在电力能效监控管理系统中,提出了基于小波包的特征提取和BP(back propagation)神经网络相结合的方法,对三相整流电路中故障晶闸管位置进行诊断和识别.根据整流电路原理,对22种故障情况分别进行编码.建立三相整流电路故障模型,采用小波包分解的方法,对直流端输出电压的采样数据进行特征提取,构建特征向量,作为BP神经网络的训练样本,将对应故障的编码作为网络输出,用简化的训练好的神经网络即可以实现整流电路的故障位置识别.仿真结果证明,采用小波包特征提取,作为神经网络训练样本,既可以简化神经网络训练结构,又可以准确实现故障定位识别.研究具有很大的工程实践意义.

In the power energy efficiency management system,the feature extraction based on wavelet packet combining with back propagation(BP) neural network was proposed and applied to thyristor fault diagnosis and identification in the three-phase rectifier circuit. According to the principles of rectifier circuit, 22 kinds of fault were encoded respectively. The fault model of three-phase rectifier circuit was set up. Using the wavelet packet decomposition method, feature extraction of the DC output voltage was conducted to construct the feature vectors, which was saved as training samples of BP neural network. The corresponding fault codes were used as the network...

部分文件列表

文件名 大小
基于小波包神经网络的整流电路晶闸管故障识别.pdf 870K

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载