- 1
- 2
- 3
- 4
- 5
GWO与ABC的混合优化算法及其聚类优化
资料介绍
灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不足.为实现二者优势互补,提出了一种GWO与ABC的混合算法(Hybrid GWO with ABC,HGWOA).首先,使用静态贪心算法替代ABC雇佣蜂阶段中的动态贪心算法来强化探索能力,同时为弥补其收敛速度降低的不足,提出一种新型的搜索蜜源方式;然后,去掉影响收敛速度的侦查蜂阶段,在雇佣蜂阶段再添加反向学习策略,以避免搜索陷入局部最优;最后,为了平衡以上雇佣蜂阶段的探索能力,在观察蜂阶段,自适应融合GWO,以便增强开采能力和提高优化效率.大量的函数优化和聚类优化的实验结果表明,与state-of-the-art方法相比,HGWOA具有更好的优化性能及更强的普适性,且能更好地解决聚类优化问题
部分文件列表
文件名 | 大小 |
GWO与ABC的混合优化算法及其聚类优化.pdf | 1M |
部分页面预览
(完整内容请下载后查看)最新上传
-
21ic小能手 打赏10.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
cai0603 打赏3.00元 3天前
用户:CJQ_ENJOY
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
cai0603 打赏3.00元 3天前
用户:dongshao
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏10.00元 3天前
-
21ic下载 打赏310.00元 3天前
用户:gsy幸运
-
21ic下载 打赏310.00元 3天前
用户:zhengdai
-
21ic下载 打赏310.00元 3天前
用户:小猫做电路
-
21ic下载 打赏310.00元 3天前
用户:liqiang9090
-
21ic下载 打赏270.00元 3天前
用户:kk1957135547
-
21ic下载 打赏160.00元 3天前
用户:w178191520
-
21ic下载 打赏160.00元 3天前
用户:w1966891335
-
21ic下载 打赏50.00元 3天前
用户:w993263495
-
21ic下载 打赏40.00元 3天前
用户:w993263495
-
21ic下载 打赏90.00元 3天前
用户:cooldog123pp
-
21ic下载 打赏30.00元 3天前
用户:sun2152
-
21ic下载 打赏40.00元 3天前
用户:xzxbybd
-
21ic下载 打赏40.00元 3天前
用户:铁蛋锅
-
21ic下载 打赏30.00元 3天前
用户:happypcb
-
21ic下载 打赏50.00元 3天前
用户:forgot
-
21ic下载 打赏10.00元 3天前
用户:xuzhen1
-
21ic下载 打赏20.00元 3天前
用户:wanglu6666
-
21ic下载 打赏5.00元 3天前
用户:人间留客
-
21ic下载 打赏5.00元 3天前
用户:jyxjiyixing
-
21ic下载 打赏5.00元 3天前
用户:akae_du
-
21ic下载 打赏5.00元 3天前
用户:ouyang_56
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
xlhtracy 打赏10.00元 3天前
-
xlhtracy 打赏10.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
21ic小能手 打赏5.00元 3天前
-
xlhtracy 打赏5.00元 3天前
-
czmhcy 打赏1.00元 3天前
资料:bitboy
全部评论(0)