推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

基于扩展卡尔曼滤波的锂电池SOC估算

更新时间:2020-10-29 18:02:29 大小:790K 上传用户:gsy幸运查看TA发布的资源 标签:卡尔曼滤波锂电池 下载积分:2分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

锂离子电池荷电状态SOC是反映电池及电源系统特性的重要参数,与电池安全性、寿命、效率密切相关。根据电池容量、阻抗、温度和充放电特性,建立二阶RC等效模型,鉴于传统卡尔曼滤波估算SOC误差过大,提出扩展卡尔曼滤波(EKF)与工作电压-荷电状态特性相结合的SOC估算方法。MATLAB仿真和实验结果表明二阶RC模型能够表征电池充放电阻抗、温度特性,扩展卡尔曼滤波法能够精确的估计电池的荷电状态,估值误差在4%以内,该模型及估值方法具有较高精度,适合SOC在线评估。

The charge state of the lithium-ion battery is an important parameter reflecting battery characteristics and battery management system. The parameter is closely related to battery safety, life and efficiency. According to the battery capacity, impedance, temperature and charge-discharge characteristics, a second-order RC equivalent model is established. The estimation error of SOC is too large using traditional Kalman filter. This paper proposes a SOC estimation method combining extended Kalman filter with operating voltage-charge state characteristics. The MATLAB simulation and experimental results show that the second-order RC model can characterize the charge-discharge impedance and temperature characteristics of the battery. The extended Kalman filter method can accurately estimate the charge state of the battery. The estimation error is less than 4%. The model and the estimate method have high accuracy for SOC online evaluation.

部分文件列表

文件名 大小
基于扩展卡尔曼滤波的锂电池SOC估算.pdf 790K

【关注B站账户领20积分】

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载