推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

神经网络动态系统的辨识与控制

更新时间:2023-11-25 19:27:15 大小:670K 上传用户:xuzhen1查看TA发布的资源 标签:神经网络 下载积分:2分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

神经网络动态系统的辨识与控制 用数学系统理论处理动态系统的分析与合成在过去的五十年里已经被列为应用广泛的权威科学原理了。权威系统理论最先进的地方定义于基于线性代数以及复合变量理论的先进技术线性操作器以及线性常微分方程。由于动态系统的设计技术与它们的稳定特性密切相关,线性时间不变系统的充分必要条件在上世纪已经产生了,所以已经建立了动态系统的著名设计方法。相反,只要在系统对系统基础上就可以基本上建立非线性系统的稳定性,因此对于大部分系统没有同时满足稳定性、鲁棒性以及良好动态响应的设计程序并不希奇。 过去三十年来,对线性、非时变和具有不确定参数的对象进行辨识与自适应控制的研究已取得了很大的进展。但是在这些研究中辨识器和控制器的结构选取和保证整个系统全局稳定性的自适应调参规律的构成等,都是建立在线性系统理论基础上的[1]。在本论文中,我们感兴趣的是神经网络非线性动态系统的控制与辨识。由于很少有可以直接应用的非线性系统理论结果存在,所以必须密切关注这个问题以及辨识器和控制器结构的选择和调整参数适应性规则的通用性问题。 在人工神经网络领域里,有两类网络今年来最引人注目:它们是(1)多层神经网络(2)回归神经网络。多层神经网络被证实在解决模式辨识问题[2]-[5]上非常成功。而回归神经网络则经常用于联想记忆以及制约优化问题的解决 [[6]-[9]。从系统理论的观点来看,多层网络呈现静态非线性映射,而回归网络则通过非线性动态反馈系统显现。尽管两种网络存在外观上的不同外,但是很有必要将他们用统一成更一般化的网络。事实上,笔者确信将来会越来越多的用到动态因素以及反馈,这导致包括两种网络的复杂系统的产生。这样,将两个网络统一起来就成为必要。在本文的第三章,这个观点会得到进一步的阐述。 本文用了三个主要目标。第一个也是最重要的一个目标是在未知非线性动态系统中为自适应控制利用神经网络提出辨识以及控制器结构。当未知参数线性系统的自适应控制器设计有了主要的提高,这种控制器就不能用于非线性系统的整体控制。因此所提出的这个模型在表现这个方向的第一步。第二个目标是为基于反向传播的参数动态调整提出规定的方法这项反相传播算法将在这节中加以介绍。第三个最后的目标是明确规定必须假定的方法论设想以提出问题。在整个论文中运用了经常用于系统理论的系统方框图、电脑仿真来对不同概念进行阐述。本文的结构如下:

部分文件列表

文件名 大小
神经网络动态系统的辨识与控制.doc 670K

【关注B站账户领20积分】

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载