推荐星级:
  • 1
  • 2
  • 3
  • 4
  • 5

基于Caffe的嵌入式多核处理器 深度学习框架并行实现

更新时间:2020-01-05 10:32:39 大小:2M 上传用户:IC老兵查看TA发布的资源 标签:嵌入式处理器深度学习 下载积分:1分 评价赚积分 (如何评价?) 打赏 收藏 评论(0) 举报

资料介绍

针对开源深度学习快速特征嵌入的卷积框架(Caffe)在Android移动端进行前向计算时存在的兼容性和时间性能差的问题,提出了基于Caffe的嵌入式同构、异构并行化改进设计方法。该方法将Caffe及其第三方库通过交叉编译移植到嵌入式移动平台后,利用同构的多核多线程方法分别对卷积层、输入帧之间的部分前向计算过程进行了并行化;实现了采用开放运算语言(OpenCL)的异构图形处理器(GPU)卷积计算,进一步提升了框架的处理速度。对3种经典的深度神经网络模型MNIST、Cifar-10和CaffeNet进行了测试对比,测试结果表明:在没有任何模型精度损失的条件下,并行后的前向计算耗时明显低于并行前,时间性能提升最高达到2倍。所提方法能够将深度学习框架Caffe高效地、并行地部署和应用于嵌入式移动多核芯片上。


部分文件列表

文件名 大小
基于Caffe的嵌入式多核处理器_深度学习框架并行实现.pdf 2M

全部评论(0)

暂无评论

上传资源 上传优质资源有赏金

  • 打赏
  • 30日榜单

推荐下载