适用于恶劣工业环境下时限通信的
可靠以太网物理层解决方案
工业应用为什么要采用以太网?
越来越多的工业系统采用以太网连接来解决制造商面临的工业4.0和智能工厂通信关键挑战,包括数据集成、同步、终端连接和系统互操作性挑战。以太网互联工厂通过实现信息技术(IT)与操作技术(OT)网络之间的连接,可提高生产率,同时提高生产的灵活性和可扩展性。这样,使用一个支持时限通信的无缝、安全的高带宽网络便可监控工厂的所有区域。
规模计算和可靠的通信基础设施是互联工厂的命脉。当今的网络面临着流量负载不断增长以及众多协议之间互操作性的挑战,这些协议需要使用复杂且耗电的网关来转换整个工厂的流量。通过向工厂边缘终端无缝交付关键的确定性性能,工业以太网可解决同一网络中的这些互操作性问题。过去一直缺乏专为可靠的工业环境设计的适用以太网物理层(PHY)。长期以来,工业通信设备的设计人员不得不使用针对大众市场开发的消费级标准以太网PHY。在工业4.0时代,终端节点的数量正在加速增长,确定性对于实现互联工厂极其重要,因此增强的工业级工业以太网PHY至关重要。
带内部旁路电容的数据采集
μModule器件的PSRR特性表征
在优化数据采集(DAQ)系统时,设计人员必须仔细考虑电源对高精度性能的影响。电源电路中通常都包含低压差线性稳压器和DC-DC开关模式转换器的组合。开关模式转换器的一个缺点是:它们会产生输出纹波。虽然纹波幅度相对较低,但它们会耦合到模拟信号路径的关键元件中,可能会破坏测量和降低性能。电源元件通常必须具备极低的噪声,并且在PCB的多个位置进行充分的电源去耦,以防止信号链的性能下降。
电源电压抑制比(PSRR)是衡量系统抑制电源噪声和干扰能力的量化指标。随着DAQ解决方案通过系统级封装(SiP)技术发展成为更完整的信号链解决方案,可将电源去耦和精密信号链封装在一起,以提高整个系统的PSRR。
轻松构建交流和直流数据采集信号链
模数转换器(ADC)中的采样会产生混叠和电容反冲问题,为此设计人员使用滤波器和驱动放大器来解决,但这又带来了一系列相关挑战。尤其是在中等带宽应用中,实现精密直流和交流性能面临挑战,设计人员最终不得不降低系统目标。
本文介绍连续时间-Δ ADC,通过简化信号链来有效解决采样问题。采用这种方法无需使用抗混叠滤波器和缓冲器,并可解决与额外组件相关的信号链失调误差和漂移问题。进而可缩小解决方案尺寸,简化设计,并改善系统的相位匹配和整体延迟。
本文还将连续时间转换器与离散时间转换器进行了比较,并着重介绍使用连续时间-Δ ADC的系统优势和存在的限制。
A2B应用面面观
纵观历史,会发现许多汽车行业利用相邻和互补市场技术实现转化的示例;工业、消费电子和医疗健康行业只是其中几个。
从引进采矿业的传输系统来实现汽车大规模生产的变革,到利用电子控制单元(ECU)的处理能力(该技术自30多年前首次运用微控制器功能以来持续迅速发展),这种汽车行业借用技术转化并充分发挥其优势的例子不胜枚举。现在,汽车行业也在回馈一项可以简化各种应用中的音频分配挑战的技术。
A2B®总线是一种高带宽双向数字总线,最初用于解决汽车应用中的音频分配挑战。现有的汽车音频网络一般使用多个点对点模拟连接。A2B技术可以解决许多与点对点模拟连接相关的挑战,包括电缆重量、电缆成本、布线难题,以及多个连接的可靠性。它有助于通过非屏蔽双绞线(UTP)电缆和连接器基础结构在分布式多节点音频系统中传输完全同步的音频数据(I2S / TDM /PDM)和控制数据(I2C)。该技术可提供50Mbps的总线带宽,上下行支持最多32个音频通道。A2B技术支持点对点、菊花链和分支网络拓扑。